Actual source code: baijsolvtran5.c
1: #include <../src/mat/impls/baij/seq/baij.h>
2: #include <petsc/private/kernels/blockinvert.h>
4: PetscErrorCode MatSolveTranspose_SeqBAIJ_5_inplace(Mat A,Vec bb,Vec xx)
5: {
6: Mat_SeqBAIJ *a =(Mat_SeqBAIJ*)A->data;
7: IS iscol=a->col,isrow=a->row;
8: const PetscInt *r,*c,*rout,*cout;
9: const PetscInt *diag=a->diag,n=a->mbs,*vi,*ai=a->i,*aj=a->j;
10: PetscInt i,nz,idx,idt,ii,ic,ir,oidx;
11: const MatScalar *aa=a->a,*v;
12: PetscScalar s1,s2,s3,s4,s5,x1,x2,x3,x4,x5,*x,*t;
13: const PetscScalar *b;
15: VecGetArrayRead(bb,&b);
16: VecGetArray(xx,&x);
17: t = a->solve_work;
19: ISGetIndices(isrow,&rout); r = rout;
20: ISGetIndices(iscol,&cout); c = cout;
22: /* copy the b into temp work space according to permutation */
23: ii = 0;
24: for (i=0; i<n; i++) {
25: ic = 5*c[i];
26: t[ii] = b[ic];
27: t[ii+1] = b[ic+1];
28: t[ii+2] = b[ic+2];
29: t[ii+3] = b[ic+3];
30: t[ii+4] = b[ic+4];
31: ii += 5;
32: }
34: /* forward solve the U^T */
35: idx = 0;
36: for (i=0; i<n; i++) {
38: v = aa + 25*diag[i];
39: /* multiply by the inverse of the block diagonal */
40: x1 = t[idx]; x2 = t[1+idx]; x3 = t[2+idx]; x4 = t[3+idx]; x5 = t[4+idx];
41: s1 = v[0]*x1 + v[1]*x2 + v[2]*x3 + v[3]*x4 + v[4]*x5;
42: s2 = v[5]*x1 + v[6]*x2 + v[7]*x3 + v[8]*x4 + v[9]*x5;
43: s3 = v[10]*x1 + v[11]*x2 + v[12]*x3 + v[13]*x4 + v[14]*x5;
44: s4 = v[15]*x1 + v[16]*x2 + v[17]*x3 + v[18]*x4 + v[19]*x5;
45: s5 = v[20]*x1 + v[21]*x2 + v[22]*x3 + v[23]*x4 + v[24]*x5;
46: v += 25;
48: vi = aj + diag[i] + 1;
49: nz = ai[i+1] - diag[i] - 1;
50: while (nz--) {
51: oidx = 5*(*vi++);
52: t[oidx] -= v[0]*s1 + v[1]*s2 + v[2]*s3 + v[3]*s4 + v[4]*s5;
53: t[oidx+1] -= v[5]*s1 + v[6]*s2 + v[7]*s3 + v[8]*s4 + v[9]*s5;
54: t[oidx+2] -= v[10]*s1 + v[11]*s2 + v[12]*s3 + v[13]*s4 + v[14]*s5;
55: t[oidx+3] -= v[15]*s1 + v[16]*s2 + v[17]*s3 + v[18]*s4 + v[19]*s5;
56: t[oidx+4] -= v[20]*s1 + v[21]*s2 + v[22]*s3 + v[23]*s4 + v[24]*s5;
57: v += 25;
58: }
59: t[idx] = s1;t[1+idx] = s2; t[2+idx] = s3;t[3+idx] = s4; t[4+idx] = s5;
60: idx += 5;
61: }
62: /* backward solve the L^T */
63: for (i=n-1; i>=0; i--) {
64: v = aa + 25*diag[i] - 25;
65: vi = aj + diag[i] - 1;
66: nz = diag[i] - ai[i];
67: idt = 5*i;
68: s1 = t[idt]; s2 = t[1+idt]; s3 = t[2+idt];s4 = t[3+idt]; s5 = t[4+idt];
69: while (nz--) {
70: idx = 5*(*vi--);
71: t[idx] -= v[0]*s1 + v[1]*s2 + v[2]*s3 + v[3]*s4 + v[4]*s5;
72: t[idx+1] -= v[5]*s1 + v[6]*s2 + v[7]*s3 + v[8]*s4 + v[9]*s5;
73: t[idx+2] -= v[10]*s1 + v[11]*s2 + v[12]*s3 + v[13]*s4 + v[14]*s5;
74: t[idx+3] -= v[15]*s1 + v[16]*s2 + v[17]*s3 + v[18]*s4 + v[19]*s5;
75: t[idx+4] -= v[20]*s1 + v[21]*s2 + v[22]*s3 + v[23]*s4 + v[24]*s5;
76: v -= 25;
77: }
78: }
80: /* copy t into x according to permutation */
81: ii = 0;
82: for (i=0; i<n; i++) {
83: ir = 5*r[i];
84: x[ir] = t[ii];
85: x[ir+1] = t[ii+1];
86: x[ir+2] = t[ii+2];
87: x[ir+3] = t[ii+3];
88: x[ir+4] = t[ii+4];
89: ii += 5;
90: }
92: ISRestoreIndices(isrow,&rout);
93: ISRestoreIndices(iscol,&cout);
94: VecRestoreArrayRead(bb,&b);
95: VecRestoreArray(xx,&x);
96: PetscLogFlops(2.0*25*(a->nz) - 5.0*A->cmap->n);
97: return 0;
98: }
100: PetscErrorCode MatSolveTranspose_SeqBAIJ_5(Mat A,Vec bb,Vec xx)
101: {
102: Mat_SeqBAIJ *a=(Mat_SeqBAIJ*)A->data;
103: IS iscol=a->col,isrow=a->row;
104: const PetscInt n =a->mbs,*vi,*ai=a->i,*aj=a->j,*diag=a->diag;
105: const PetscInt *r,*c,*rout,*cout;
106: PetscInt nz,idx,idt,j,i,oidx,ii,ic,ir;
107: const PetscInt bs =A->rmap->bs,bs2=a->bs2;
108: const MatScalar *aa=a->a,*v;
109: PetscScalar s1,s2,s3,s4,s5,x1,x2,x3,x4,x5,*x,*t;
110: const PetscScalar *b;
112: VecGetArrayRead(bb,&b);
113: VecGetArray(xx,&x);
114: t = a->solve_work;
116: ISGetIndices(isrow,&rout); r = rout;
117: ISGetIndices(iscol,&cout); c = cout;
119: /* copy b into temp work space according to permutation */
120: for (i=0; i<n; i++) {
121: ii = bs*i; ic = bs*c[i];
122: t[ii] = b[ic]; t[ii+1] = b[ic+1]; t[ii+2] = b[ic+2]; t[ii+3] = b[ic+3];
123: t[ii+4] = b[ic+4];
124: }
126: /* forward solve the U^T */
127: idx = 0;
128: for (i=0; i<n; i++) {
129: v = aa + bs2*diag[i];
130: /* multiply by the inverse of the block diagonal */
131: x1 = t[idx]; x2 = t[1+idx]; x3 = t[2+idx]; x4 = t[3+idx]; x5 = t[4+idx];
132: s1 = v[0]*x1 + v[1]*x2 + v[2]*x3 + v[3]*x4 + v[4]*x5;
133: s2 = v[5]*x1 + v[6]*x2 + v[7]*x3 + v[8]*x4 + v[9]*x5;
134: s3 = v[10]*x1 + v[11]*x2 + v[12]*x3 + v[13]*x4 + v[14]*x5;
135: s4 = v[15]*x1 + v[16]*x2 + v[17]*x3 + v[18]*x4 + v[19]*x5;
136: s5 = v[20]*x1 + v[21]*x2 + v[22]*x3 + v[23]*x4 + v[24]*x5;
137: v -= bs2;
139: vi = aj + diag[i] - 1;
140: nz = diag[i] - diag[i+1] - 1;
141: for (j=0; j>-nz; j--) {
142: oidx = bs*vi[j];
143: t[oidx] -= v[0]*s1 + v[1]*s2 + v[2]*s3 + v[3]*s4 + v[4]*s5;
144: t[oidx+1] -= v[5]*s1 + v[6]*s2 + v[7]*s3 + v[8]*s4 + v[9]*s5;
145: t[oidx+2] -= v[10]*s1 + v[11]*s2 + v[12]*s3 + v[13]*s4 + v[14]*s5;
146: t[oidx+3] -= v[15]*s1 + v[16]*s2 + v[17]*s3 + v[18]*s4 + v[19]*s5;
147: t[oidx+4] -= v[20]*s1 + v[21]*s2 + v[22]*s3 + v[23]*s4 + v[24]*s5;
148: v -= bs2;
149: }
150: t[idx] = s1;t[1+idx] = s2; t[2+idx] = s3; t[3+idx] = s4; t[4+idx] =s5;
151: idx += bs;
152: }
153: /* backward solve the L^T */
154: for (i=n-1; i>=0; i--) {
155: v = aa + bs2*ai[i];
156: vi = aj + ai[i];
157: nz = ai[i+1] - ai[i];
158: idt = bs*i;
159: s1 = t[idt]; s2 = t[1+idt]; s3 = t[2+idt]; s4 = t[3+idt]; s5 = t[4+idt];
160: for (j=0; j<nz; j++) {
161: idx = bs*vi[j];
162: t[idx] -= v[0]*s1 + v[1]*s2 + v[2]*s3 + v[3]*s4 + v[4]*s5;
163: t[idx+1] -= v[5]*s1 + v[6]*s2 + v[7]*s3 + v[8]*s4 + v[9]*s5;
164: t[idx+2] -= v[10]*s1 + v[11]*s2 + v[12]*s3 + v[13]*s4 + v[14]*s5;
165: t[idx+3] -= v[15]*s1 + v[16]*s2 + v[17]*s3 + v[18]*s4 + v[19]*s5;
166: t[idx+4] -= v[20]*s1 + v[21]*s2 + v[22]*s3 + v[23]*s4 + v[24]*s5;
167: v += bs2;
168: }
169: }
171: /* copy t into x according to permutation */
172: for (i=0; i<n; i++) {
173: ii = bs*i; ir = bs*r[i];
174: x[ir] = t[ii]; x[ir+1] = t[ii+1]; x[ir+2] = t[ii+2]; x[ir+3] = t[ii+3];
175: x[ir+4] = t[ii+4];
176: }
178: ISRestoreIndices(isrow,&rout);
179: ISRestoreIndices(iscol,&cout);
180: VecRestoreArrayRead(bb,&b);
181: VecRestoreArray(xx,&x);
182: PetscLogFlops(2.0*bs2*(a->nz) - bs*A->cmap->n);
183: return 0;
184: }